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AR(1): Autoregressive of order 1

Autoregressive models are used to explain phenomena whose present
value can be derived by their past value plus a random shock.
A better interpretation and diffusion of this class of models with
respect to the Moving Average class is due to their similarities with
the linear regression model.

Xt = φXt−1 + ϵt,

ϵt ∼ WN(0, σ2),

(Xt = δ + φXt−1 + ϵt) .
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AR(1): Autoregressive of order 1

If |φ| ≥ 1 then the process Xt would explode (to ±∞) because the
shocks ϵt would accumulate and would not vanish in time.
It is not surprising that when |φ| ≥ 1 the Autoregressive process is
not stationary.
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Figure: Stationary and non stationary AR(1) time series.
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More formally, iterating substitutions of the process:

Xt = φXt−1 + ϵt = φ(φXt−2 + ϵt−1) + ϵt = φ2Xt−2 + φϵt−1 + ϵt =

= φ2(φXt−3 + ϵt−2) + φϵt−1 + ϵt = φ3Xt−3 + φ2ϵt−2 + φϵt−1 + ϵt =

. . . . . . . . .

= ϵt + φϵt−1 + φ2ϵt−2 + . . . → MA(∞),

which is stationary if |φ| < 1.
Taking the expected value and recalling that

∞∑
j=0

φj =
1

1 − φ

if |φ| < 1, then:

E
(
ϵt + φϵt−1 + φ2ϵt−2 + . . .

)
=

0
1 − φ

< ∞.
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For the variance we have:

Var(Xt) = γ(0) = E(Xt−µ)2 = E(Xt)
2 = E(ϵt+φϵt−1+φ2ϵt−2+. . . . . .)2

= Var(ϵt + φϵt−1 + φ2ϵt−2 + . . . . . .) =

= (1 + φ2 + φ4 + φ6 + . . .)σ2 = σ2
∞∑

j=0
φ2j =

σ2

1 − φ2 ,

if |φ| < 1
The autocovaiance function is given by:

γ(h) = E
[(

ϵt + φϵt−1 + φ2ϵt−2 + . . .+ φhϵt−h + φh+1ϵt−h−1+

φh+2ϵt−h−2 + . . .
)]

×
(
ϵt−h + φϵt−h−1 + φ2ϵt−h−2 + . . .

)
] =

= (φh + φh+2 + φh+4 + . . .)σ2 = φh(1 + φ2 + φ4 + . . .)σ2 =

= σ2 φh

1 − φ2 = φhγ(0),

if |φ| < 1.
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The ACF is given by:

ρ(h) = γ(h)
γ(0) = φh.

When φ > 0, the ACF decays exponentially to zero.
When φ > 0, the ACF decays exponentially to zero but with positive
and negative fluctuations.
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Figure: ACF of two AR(1) stationary processes.
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1 The autocorrelations, ρ(h) are the elements of a progressive
geometric series that converges to zero as |φ| < 1,

lim
h→∞

ρ(h) = lim
h→∞

φh = 0 if |φ| < 1.

2 The autocovariance function can be written recursively by using a
first difference equation:

γ(h) = φγ(h − 1), h > 0.

3 The autocorrelation function can be written in a similar way:

ρ(h) = φρ(h − 1).
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4 The impulse response function is equal to:

∂Xt+j
∂ϵt

= φj,

that is, the ACF and in the long-run the effect of a shock vanishes if
|φ| < 1.

5 The greater the parameter φ the greater the correlation with the past,
the greater is the effect of a shock in time.

6 A stationary AR(1) process can be written in terms of MA(∞).
Results 1,2,3,4,5 allows to understand the stationarity condition, if
|φ| > 1 those effects would amplify with time.
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Figure: Correlogram of stationary AR(1) processes.

11 / 20



An alternative way to obtain stationary conditions is to consider the
representation of the AR(1) in terms of B operator:

Xt = φXt−1 + ϵt

⇔

Xt − φXt−1 = ϵt

⇔

(1 − φB)Xt = ϵt

This condition requires the roots in B of (1 − φB) = Φ(B) = 0 to lie
outside the unit circle, that is, |B| > 1 ⇔ |φ| < 1.
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An alternative way to obtain the MA(∞) representation of an AR(1)
is to consider the B operator starting from: (1 − φB)Xt = ϵt and to
derive

Xt = (1 − φB)−1ϵt =
1

(1 − φB)ϵt.

For stationary process we can then write:

1
(1 − φB) =

∞∑
i=0

(φB)i = 1 + (φB) + (φB)2 + . . . . . .

Thus,

Xt =
1

(1 − φB) =
∞∑
i=0

(φB)iϵt =
∞∑
i=0

(φ)iϵt−i.
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For PACF, recalling what we saw before, we have

ϕ11 = ρ(1) = φ.

For ϕkk, recalling the definition of AR(1), we have

ϕkk = 0 ∀k ≥ 2.

For example. ϕ22 = 0. If it was not zero, we could write:

Xt = ϕ21Xt−1 + ϕ22Xt−2 + et,

However, since the process is autoregressive of first order, it must be
ϕ22 = 0.
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Figure: PACF of stationary AR(1) processes.
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Figure: Estimated PACF of stationary AR(1) processes.
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Before studying AR(2) processes, consider the case in which φ = 1,
i.e., the process has Unit Root.
in this case the model writes:

Xt = Xt−1 + ϵt,

ϵt ∼ WN(0, σ2).

It is a kind of random walk process.
The time series and its correlogram may look like the following:
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Applying the first differences we would get:

∇Xt = ϵt.

That is, a stationary process. In this case the process Xt is first order
integrated, Xt ∼ I(1).
It means that the process Xt needs to be differentiated once in order
to be stationary.
We already discussed that the random walk in not stationary.
Moreover, it is possible to claim that a shock has permanent effect:

∂Xt+h
ϵt

= 1 ∀h > 0.
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If the AR(1) process is of the kind (Xt = δ + φXt−1 + ϵt), it can be
observed that the process is stationary. Then, E(Xt) = µ ∀t for which

E(Xt) = δ + φE(Xt−1) + E(ϵt),

µ = δ + φµ,

µ =
δ

(1 − φ)
.
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